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THE INTERACTION BETWEEN SHOCK AND RAREFACTION WAVES 

IN THE PROBLEM OF ANGULAR PISTON* 

S.N. MARTIUSHOV 

Motion of a dihedral piston one of whose faces moves into while the other pulls out 

from the initially quiescent perfect gas is considered. The problemis investigated 
analytically in the linearized self-similar formulation, and numericallyintotally 
nonlinearized formulation. Analytic form of the basic shock wave is obtained on 
the assumption that the velocity of the moving-in face is small in comparison with 

the speed of sound. The method of finite differences is applied to different veloc- 
ities of piston faces. The pattern of arising flows is investigated. 

The potential flows generated by an angular piston with flat faces pulling out from a 

perfect gas were considered in /l-77/ (the piston moving into an isothermalgaswas considered 
in /l/J. When the velocity of the piston faces moving out exceeds some critical value the 
gas becomes detached from the piston, and there is flow into vacuum. An exact solution de- 
fining a particular case of such flow was considered in /2/. The pulling out of an angular 
piston was considered in /3,4/ for faces velocities below the critical. In /5,6/ flows gener- 
ated by the pulling out of a trihedral angle was investigated. In the perturbed region at 

the corner apex the flow is of the form of potential triple wave. Approximate solution de- 
fining the move into and pulling out motions of a dihedral piston with apex angle close to n 

were obtained in /7-9/ in linear formulation of the problem. The two-dimensional disintegra- 
tion of discontinuity of such form was also considered. 

Unlike in the majority of cited publications, a nonisentropic flow whose potentiallity 

is not assumed is considered here. When the velocity of the pulling out face exceeds some 

critical value, a vacuum zone appears near it. It is not a priori clear whether in the 

moving-in piston face neighborhood the plane gas-vacuum interface becomes curved, or whetner 

tongues of gas can penetrate there the vacuum region. 
Let a perfect polytropic gas (the speed of sound c0 =(yP'i'r~")'l~) is at rest inside a di- 

hedral angle .rl = O,z, = 0. At t = 0 the dihedral piston begins to move in a plane-parallel 

uniform motion at constant speed of the apex U, = (a, b), a( -l/x, x = (u - I)/& where b>O 
is a small quantity. The generated plane flow depends on a single dimensionless parameter 

blc” (when G<--1ix the piston face z,=at is separated from the gas by the vacuum zone and 

does not affect the flow). We assume the flow to be self-similar, and all quantities depend 

on 5, = x,lt, E2 = x,lt. In what follows we assume co = 1. 

InFig. the flow is represented in the E,, E, plane. Region 1 bounded by the straight 

lines E, = 1, 5, = D = (v f- 1) b/4 + [I -I- ((y + 1) b/4)*]‘/z, is quiescent. In region 3 the motion is 

uniform, the velocity components are Us = 0, u?= b, and the speed of sound c = c?> 1. In re- 

gion 2 defined by the inequalities ---l/x< 5, < 1, s,>j(&) (& = I@,,) is the shock wave) we 
have a Riemann rarefaction wave, and 

U2 = 0, U1 = U" (51) = 2 (E, - i)!(Y + 1). c =: cg (51) = 1 A XUO (El). 
Gasdynamic quantities throughout the region of the considered here self-similar flow is 

defined by the system of equations 

(1) 

where c(&,&) is the speed of sound. 
Let us first construct an approximate solution of the stated problem byusinglinearizing 

system (1). 
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We substitute (2) into (l), carry out linearization, and obtain for U, V,C the system 

of three equations 

1 
If the piston face velocity h is considered as the 

small parameter we can consider the shock wave & = I(&) 

as weak and disregard the entropy variation. We represent 
3 the gasdynamic quantities in region 4 in the form 

7 
- UI= &- (El- I) + bU (51. E?) = uo (51) + bu, ut = bV (E,, Et) (2) 

. 

L+c+(u+c)~= -+(u+c); LJ-cog=0 (3) 

I.,c-,,,(~~~)=~u;c;~=~(uic): 

Lo=co&+Ez& 

where uO,cO are functions of EL, not constants as in /8,9/, which results in a more complex 

structure of the system of equations, and necessitates a change in the method of the approx- 

imate solution derivation. 

In region 4 system (3) is hyperbolic when C,>O and has three sets of characteristics 

along which are satisfied the following differential relations: 

1". 51=const; &dU-codV-_dC=~(U +C)dE, 

2”. & = const cp, v+* a=y--i, 

codU$&dV -$ddC=$+U+c)db 

3”. Ez= C~(cOnStC~B+*)I’*, p=*; 

- gz2dU + &co dV + Sr’ dC = 
x +co (U t V) d& 

The Hugoniot conditions on a weak shock wave & = f(&) are of the form /lo/ 

((V, - V,) N)? = 2 2’7 - ((V, - U,) N)] ((I’, - V,) N) 
y+l ((Vu-U-V\) L 

(V,T) = (V,T), cl* = co* + x [((V,- U,) 3)’ - ((V,U,) ~‘11 
V. = (u. (El), 0), V1 = (ul, (I?), T = (1, /‘)/(I + 1’zj”7 
N = (f’, - I)/(1 + f-)l’r, u, = (El? f (51)) 

(41 

where V, is the velocity vector of gas particles ahead of the shock wave, and VI and Cl are 
respectively, the vector of gas particle velocity vector and the speed of sound behind the 

shock wave. 

Substituting in conditions (4) for uI, IL~,C their approximation (2) and linearizing the 
resulting equations, we obtain conditions for U, V, C and an ordinary differential equation 
for the determination of the approximate form of shock wave & = f,(E,). Its solution yields 

f. (El) = co (const cofl + G)“, , I3 = * (5) 

c (51, fo (51)) = x (1 + fov*V (517 fo (5,)) 
u (El, fo (El)) = -fo’ V (El, fll (El)) 

The shock wave approximation ED = fo(E,) is a characteristic of system (3). Substituting 
(5) into the differential relation on the characteristic of set 3O, we obtain 

dl’ (it) 
-z- :I = v (El) f,, & f”‘, 

[+- 
co (x (1 t jo’y~ - f.‘) - fY~.iO” - f.?il;f,,” 

(1 + f”‘)“’ 1 
The first of Eq.(5) defines the form of the curvilinear shock wave. Integrating Eq. (6) 

along it and substituting V(&) into the second and third of Eqs.(5), we find that along the 
curvilinear shock wave V (E,), U (E,), C (5,). 

The nonisentropic flow in region 4 is separated from that in region 3 by the weak shock 
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wave !&= g (&). Substituting Eqs. (2) into the Hugoniot conditions (3) , where I.,, (II, 0) c,, TV L'_, 

1 - cons1 and linearizing, we obtain the approximate form of the shock wave ;, : &I0 = 1 
which is a characteristic of system (3). The linearized conditions (4) with the differential 
relation along the characteristic of set lo yield for ['. I, L’ along E, = 1 the expressions 

V = 1. c = X (1 + 1,” (I))"1 = cg - const. C’ = (cg - /“‘( l))(&/D)~ - c3. h 7 4/y c 1 ( 7 1 

Three shock waves converge at point (1, U). This configuration of only three shockwaves 
is incompatible with /ll/, since one more strong discontinuity, usually a contact one, must 

pass through this point, however we shall not take it into account. 

Boundary conditions for system (3) are: (5) and (6) along E, = f. (El) ;: (1. (1) = I), (7) along 

Et=i, and V = 1 along E, = b. Boundary conditions along cJ ~-2 i,,(t!) and 5, 1 define the 
data for the Goursat problem which is solved in region .1 (Fig.1). Then the characteristic 
Cauchy problem is solved in region B bounded by the characteristic of set 3O and the piston. 

The boundary value problem in region 4 (Fig.1) was obtained using the method of characterist- 

ics. 

The profiles of quantities /:, I, C are shown in Fig.2 for the cross sections 5, = <.ollit , 
with curves 0. I. 2.3 corresponding to values :, 1 : 1. u.“‘3$: -1.Oii; -3.747 (A == 0.~) and calculated for 
y = 1.4. 

One of the difficulties of obtaining by this method of an approximate solution for --l/x< 

a<O is related to the emergence in the system of approximate equations of a region of el- 

lipticity near the angle apex. 

Let us consider the motion of the angular piston for -l<%<a<O and arbitrary (but 

not small) b> 0. The vacuum zone near the piston is now absent, and the flow depends on two 
dimensionless parameters a,c, and b/c,, and the generated shock waves are of arbitrary inten- 

sity. For analyzing this problem a method of difference calculation was developed using a 

specially produced program. This method was also used for checking the assumption of solution 

self-similarity and for determining the region approximate solution applicability. The un- 
steady plane problem of uniform plane-parallel motion of an angular piston startingfrom rest 

was calculated without the assumption of its self-similarity (Fig.3). The corner apex veloc- 

ity is ll,, z (a, 6). -1'~ < a < 0. Near the piston face I~ = at appear new regions, viz. region 

j of constant flow I(, = 0. 1L2 7 u, 
c = cQ = const and ri' in which the 

_~~~~~*~~ ;;~;:;;;~:=;;;;o 
Since in regions P and 4that 

face of the piston does not af- 

0.2 0.4 0.6 a.2 0.4 0.6 ’ n.2 0.4 0.6 0.: 5: 
compare the results of difference 

calculation of the flow in region 
Fig.2 i with the approximate solution 

(2). 
The plane unsteady flow induced by an angular piston is defined bY the systemofequations 

where e is the total energy, I' is the pressure, and 11'are the sought quantities. 

Computation were carried out using the algorithm (*) conforming to the McCormack differ- 

ence scheme of rip-through calculation of second order accuracy with nonlinear matched smooth- 

ing. 
Owing to the program peculiarities computations did not begin from I= 0 but from some 

small t,>O. They had shown stability of the flow pattern for various t,. A simple Riemann 

wave was taken as the initial conditions. The time step was selected on the basis of stabil- 

ity condition for the considered scheme (~t/Ah 0.2, 1f = 0.01 and ,At -= 0.005). with the number 

of grid nodes 41 x 91. The flow represented in Fig.3 is for f :: f1.3-0.4 and computations were 

carried out up to t- f.Z--1.4. The boundary conditions were specified on the dash-dot lines 
-- 

*) A.I. Zhmakin and A.A. Fursenko, on a class of single-point difference schemesofrip-through 

calculation. Preprint ~0.623. Fiz. Tekhn. Inst. Leningrad, 1979. 
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(Fig.3) by values of parameters in region 1% 2.3,5, and at piston faces conditions of impene- 

trability were specified. 
Position of the curvilinear shock wave generated by the Piston motion at velocity c',, = 

(--1.5; O.i), y = t.4 is shown in Fig.4. Curves 1-3 correspond to t = 0.4; 0.8; I. Width of the 

shock wave zone l- 3 is determined by the pitch of the difference grid of the problem. For 

comparison a section of the shock wave determined by the approximate solution of &=f~&) is 

shown there by the heavy continuous line. It lies in the zone 3 of shock wave "blurring". 

The self similarity of the whole flow is confirmed by the position of shock waves l-3 in the 

plane of variables 51= r,it,&= =,/t where they all merge into one line. The dash lines in Fig. 

4 represent lateral shock waves which, although weak, are reasonably clearly discernible; they 

coincide with II= t (the 

boundary between regions 3 

and 4) and with 51 = (1 + 
(I (,, + l)/Z)t, a = -1.5 (the bound- 

ary between 4 and 2). Posit- 

ion of the contact discontin- 

uity which has not separately 

taken into account in the 

derivation of the approximate 

solution, was also determined 

by difference computation. 

Contact discontinuities 4-6 

Fig.3 Fig.4 
correspond to curvilinear 

shock waves 1-3. For f=l 

the gasdynamic quantities in 

region 4 (Fig.4) determined 

by the difference computation method are in good agreement with the approximate solution of 

(2). The different problem was calculated for 

u,, = (-51s; 0.1), (-i.5; O.l), (-2; O.I), (-1.5; 0.5), (-2; 1). (--j'& 1) 

up to t = 1.4 with y = 1.4. 

The variant y= 1,8,a= -2.9, b= 1 was also calculated. In it density in region 5 is close 

to zero (p=O.OOi) and the flow shown in Fig.1 is nearly isobaric. It is interestingtoestab- 

lish the boundary between the flow in region 4 (Fig-l) and the vacuum, whether attain the 

curvilinear shock wave &=f(&) to the vacuum boundary and gas J&Z --l/x,whether in the piston 

face neighborhood &= b owing to additional pressure "tongues" of gas, issuing to the left 
beyond &=-i/x are formed. Calculations show that the curvilinear shock wave touches the 
piston face zz= bt, when at the unperturbed Riemann wave boundary I,= -t/x and vacuum. 

The results of difference computations enable us to make the following conclusions. 

1) The qualitative pattern of flow, appearing in Fig.3 and coinciding with the approx- 
imate solution (with small b), and the self-similarity of solution remains valid throughout 
the considered range of variation of a and b for l<y<3, _2.9<a<O,O<b<l. 

2) The curvilinear shock wave Ea = f(E1) finishes on the piston face x1 = bt, and at the 

vacuum-gas interface there are no gas "tongues". 

3) The approximate solution can be used up to b = 0.2-0.3 outside the neighborhood of 
the gas-vacuum interface. 
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